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ABSTRACT

Influence maximization (IM) refers to the problem of finding a sub-
set of nodes in a network through which we could maximize our
reach to other nodes in the network. This set is often called the
“seed set”, and its constituent nodes maximize the social diffusion
process. IM has previously been studied in various settings, includ-
ing under a time deadline, subject to constraints such as that of
budget or coverage, and even subject to measures other than the
centrality of nodes. The solution approach has generally been to
prove that the objective function is submodular, or has a submodu-
lar proxy, and thus has a close greedy approximation. In this paper,
we explore a variant of the IM problem where we wish to reach out
to and maximize the probability of infection of a small subset of
bounded capacity 𝐾 . We show that this problem does not exhibit
the same submodular guarantees as the original IM problem, for
which we resort to the theory of 𝛾-weakly submodular functions.
Subsequently, we develop a greedy algorithm that maximizes our
objective despite the lack of submodularity. We also develop a suit-
able learning model that out-competes baselines on the task of
predicting the top-K infected nodes, given a seed set as input.
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1 INTRODUCTION

The influence maximization (IM) problem aims to find a set of seed
nodes that maximizes the spread of information across a social
network [23]. The solution to this problem is central to the viral
marketing application where an advertiser searches for a given
number of users in a social network to spread information to the
largest number of potential customers [2, 6, 9, 11, 33, 36, 39]. At
the outset, it has two components, viz., modeling of the underlying
information diffusion process and designing the optimal seed node
selection strategy. Research on influence maximization, from both
these perspectives, abounds in literature [1, 3–8, 15, 17, 17, 22–
24, 27–29, 34, 37, 43, 44]. These models cast the expected spread
of information as a monotone submodular function and resort to
variants of greedy maximization algorithm [7, 17, 18, 21, 23, 32, 40].

In general, the existing influence maximization settings aim to
spread the information to the largest number of nodes. To this end,
they aim to maximize the expected number of users influenced by
the seed nodes — the sum of the infection probabilities of all the
nodes. Our work is motivated by the observation that in several ap-
plications, one may like to reach only a specific number of users. For
example, consider an advertising campaign for a job role through a
social network such as LinkedIn. Often, the hiring farm is limited in
the number of candidates it can interview. In this scenario, spread-
ing the advertisement to each user in the social network may be sub-
optimal in terms of getting best possible responses. Rather, the cam-
paign should be customized towards influencing 𝐾 users with the
highest possible likelihood; 𝐾 indicates the number of interviews to
be conducted. This problem can be cast as an instance of maximiz-
ing the sum of top-𝐾 infection probabilities of the users, where 𝐾
indicates the capacity of influenced users targeted in the campaign.

In a related setup, observations from social network data may
often consist of pairs of {(seed set, infected nodes)} without any
additional information, e.g., time or sequence of infection, etc.. due
to privacy issues. One can think of the set of infected nodes as the
nodes that are most likely going to be infected by the seed nodes. In
order to learn the influence of a seed set on other nodes, one needs
to learn a predictor of top-𝐾 nodes that are likely to be infected,
given a set of seed nodes.

1.1 Our contributions

Driven by the above motivation, we introduce the influence maxi-
mization problem of top-𝐾 nodes and develop TopK-InfluMax, a
framework for optimal seed node selection specifically catered to
solve this problem. Moreover, we develop InfluNet a neural set
network, which predicts the top-𝐾 nodes for a set of seed nodes in
a graph. Specifically, we make the following contributions.
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Influencemaximization of top-𝐾 nodes.We formulate the prob-
lem of influence maximization where the goal is to maximize the
sum of top-𝐾 infection probabilities across the nodes in a network.
𝐾 indicates the capacity of the campaign in terms of number of
influenced users desired. Like traditional influence maximization,
this too is NP-Hard. However, the proposed formulation changes
the theoretical characterization of the influence maximization prob-
lem dramatically. Specifically, unlike the original formulation, in-
fluence maximization over top-𝐾 nodes is neither monotone nor
sub-modular, which renders the approximation algorithms based
on the iterative greedy approach ineffective. Therefore, we require
an algorithm tailored towards the proposed problem, which we
address through the proposed framework called TopK-InfluMax.
Here, we first show that our objective can be expressed as a dif-
ference between a 𝛾-weakly submodular function and a modular
function [20]. This characterization allows us to leverage a stochas-
tic distorted greedy algorithm to obtain an approximately optimal
set of seed nodes.
Neural set network of top-𝐾 node-set prediction. Next, we aim
to design InfluNet, a trainable neural set to set network. At the
very outset, InfluNetmodels the infection probability of each node
using a nonlinear submodular network on the graph embeddings
induced by a graph neural network. In detail, InfluNet consists
of a GNN and a message passing neural submodular function (MP-
NSF). The GNN generates structural embeddings, which are fed
into MPNSF, which, in turn, characterizes the influence flow across
the network starting from the seed set. In general, an infection prob-
ability is a submodular function of the seed nodes. To that aim, we
develop a graph-induced neural submodular model that computes a
submodular function at each layer by iteratively applying concave
functions on submodular functions from the previous layer [10].
Specifically, for each node, the neural submodular model aggre-
gates the infection probabilities of its neighbor, applies a concave
function on top of it, and re-applies these two steps for a number of
layers. Such an iterative framework captures the effect of influence
from a distant node and enforces submodularity in the computa-
tion of infection probabilities. Finally, given pairs of seed-set and
influenced nodes, i.e., (𝑆, 𝐼 ), we train InfluNet by applying the
sigmoid function on the network outputs and feeding them to a
Dice coefficient-based loss function. Such a loss function ensures
that the sigmoid scores are as close to the ground truth infection
labels (0 for un-infected and 1 for infected) as possible.

We experiment with a wide variety of real world datasets, which
shows that TopK-InfluMax outperforms several state-of-the-art
influence maximization algorithms, by choosing the seed nodes that
provide a high value of the sum of top-𝐾 infection probabilities for
a wide range of capacity values (𝐾 ). The performance boost starts
to gain prominence when the seed set budget becomes moderate.
Moreover, we show that our proposed neural model InfluNet
is able to outperform other baselines, showing a larger overlap
between the predicted set of influenced nodes and the ground truth
set of influenced nodes.

2 PRELIMINARIES

In this section, we present a brief overview of the information
diffusion models, the existing influence maximization problem and
a high level overview of our goal.

2.1 Information diffusion

We are given a directed graph 𝐺 = (𝑉 , 𝐸) where a node 𝑢 can
directly influence 𝑣 if (𝑢, 𝑣) ∈ 𝐸. We define 𝑁 (𝑢) = {𝑣 | (𝑣,𝑢) ∈ 𝐸}
and 𝑁𝑜𝑢𝑡 (𝑢) = {𝑣 | (𝑢, 𝑣) ∈ 𝐸} indicating the sets of incoming and
outgoing neighbors of 𝑢 respectively. We also assign 𝑞𝑢 as the
weight of each node. In the context of job advertisement, 𝑞𝑢 may
signify the quality of node 𝑢.

Information diffusion is a sequential process initiated by a set of
seed nodes that act as the source of information. In this process, each
node can be in one of the three states at a given time 𝑡 : (i) active
(ii) inactive and (iii) susceptible. Active nodes are those that can
influence (activate) other nodes. Specifically, at any time, if a node
𝑢 receives the information or gets influenced through an incoming
neighbor, then it remains active for the next time step. Inactive
nodes are influenced nodes but are not active at the current time.
Susceptible nodes are those nodes that have not been influenced in
the past and are therefore potential candidates to be activated in
the future.

Given the seed set 𝑆 , we denote the set of influenced nodes until
time 𝑡 as 𝐼𝑆 (𝑡). Thus, the set of active nodes at time 𝑡 is 𝐴𝑆 (𝑡) =
𝐼𝑆 (𝑡)\𝐼𝑆 (𝑡 − 1). Similarly, the set of inactive nodes at time 𝑡 is
𝐼𝑆 (𝑡)\𝐴𝑆 (𝑡) = 𝐼𝑆 (𝑡 − 1) and the set of susceptible nodes at time 𝑡
is 𝑉 \𝐼𝑆 (𝑡). For each time 𝑡 , a node 𝑢 can only be influenced by the
active set 𝐴𝑆 (𝑡). We also denote 𝐼𝑆 = lim𝑡→∞ 𝐼𝑆 (𝑡) as the set of
nodes that eventually become influenced. Finally, we define 𝑝 (𝑢; 𝑆)
as the infection probability of node 𝑢 given that 𝑆 is the seed set,
i.e., 𝑝 (𝑢; 𝑆) = P(𝑢 ∈ 𝐼𝑆 ). Existing works predominantly use two
types of processes for Information diffusion:
(1) Independent cascade (IC): It assigns a probability to each edge
(𝑢, 𝑣) ∈ 𝐸 as 𝑝𝑢𝑣 ∈ [0, 1]. At each time step 𝑡 , an active node𝑢 ∈
𝐴𝑆 (𝑡 − 1) influences a subset of its out-neighborsN ⊂ 𝑁𝑜𝑢𝑡 (𝑢)
which have never been influenced i.e., N ⊆ 𝑁𝑜𝑢𝑡 (𝑢)\𝐼𝑆 (𝑡 − 1)
with the edge probability 𝑝𝑢𝑣 .

(2) Linear threshold (LT): In this mode, each edge is assigned a
probability 𝑝𝑢𝑣 ∈ [0, 1]. A node 𝑢 ∈ 𝑉 \𝐼𝑆 (𝑡 − 1) is influenced at
time 𝑡 if

∑
𝑤∈𝐴𝑠 (𝑡−1)∩𝑁 (𝑢 ) 𝑝𝑢𝑤 ≥ 𝜏𝑤 for a given threshold 𝜏𝑤 .

2.2 Influence maximization

Given an information diffusion modelM, a traditional influence
maximization task aims to find the seed nodes 𝑆 with |𝑆 | ≤ 𝑏 that
maximizes the expected number of nodes that becomes eventually
infected. Specifically, one aims to solve the following problem:

maximize𝑆⊂𝑉 E[|𝐼𝑆 |] such that, |𝑆 | ≤ 𝑏 < |𝑉 | (1)

Here, the expectation is taken over different random realizations of
the diffusion process underM.

2.3 Our goal

Our goal in this paper is two-folds. In many applications, e.g., adver-
tisement for niche job applications, one may be interested to ensure
the information reaches a limited number of suitable candidates
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rather than all the users. To this end, we aim to find seed nodes
that will maximize the sum of top-𝐾 infection probabilities. On
the other hand, in the context of designing predictive models for
information diffusion, our goal is to design a predictive model that
can accurately predict the set of top-𝐾 influenced nodes for any
seed set, given a value of 𝐾 .

3 MAXIMIZING INFLUENCE FOR TOP-𝐾

NODES

In this section, we formulate the problem of influence maximization
under capacity constraints and then provide a novel characteriza-
tion of the underlying objective. Finally, we present the stochastic
distorted greedy algorithm to solve the problem.

3.1 Problem formulation

Given a graph 𝐺 = (𝑉 , 𝐸), the node weights 𝒒 = [𝑞𝑢 |𝑢 ∈ 𝑉 ], our
goal is find the set of seed nodes 𝑆 that maximizes the sum of the
top-𝐾 weighted probabilities of the influenced nodes;𝐾 denotes the
capacity constraint. More specifically, we aim to solve the following
optimization problem:

maximize
𝑆⊂𝑉

𝐹𝐾 (𝑆) such that, |𝑆 | ≤ 𝑏 (2)

with, 𝐹𝐾 (𝑆) = max
𝐼⊆𝑉 \𝑆 : |𝐼 | ≤𝐾

∑︁
𝑢∈𝐼

𝑞𝑢 𝑝 (𝑢; 𝑆) (3)

Recall that, 𝑝 (𝑢; 𝑆) is the probability that node 𝑢 gets eventually
influenced given that 𝑆 is the seed set, i.e., 𝑝 (𝑢; 𝑆) = P(𝑢 ∈ 𝐼𝑆 ). We
would like to highlight that in Eq. (3), we aim to find the top-𝐾
infected nodes that are not in the seed set, i.e., 𝐼 ⊆ 𝑉 \𝑆 . The above
optimization problem assigns the weight 𝑞𝑢 to each node 𝑢, which
encourages that the nodes having high values of 𝑞𝑢 are influenced
with high likelihood. Such an approach is useful in advertising
niche job applications, where one may want the information to be
spread to a limited number people, quantified through 𝐾 , but with
high competence.
Hardness of the objective. Like the traditional influence maxi-
mization problem (1), solving the optimization problem (2) is also
NP-Hard. If we have 𝑞𝑢 = 1 for all 𝑢 ∈ 𝑉 , then for 𝐾 = |𝑉 |, we
have 𝐹𝐾 (𝑆) = E[𝐼𝑆 ], which reduces the optimization problem (2)
to the traditional influence maximization problem (1) which is a
well-known NP-Hard problem [23].

3.2 Characterization of 𝐹𝐾 (𝑆)
Here, we provide a novel characterizations of 𝐹𝐾 (𝑆) by startingwith
a counterexample that shows that 𝐹𝐾 (𝑆) may not be monotone and
submodular in general. Before formally presenting those results,
we first state few definitions in this context.

Definition 1. Given a set function 𝐹 : 2𝑉 → R, we define its
marginal gain 𝐹 (𝑢 | 𝑆) = 𝐹 (𝑆 ∪ {𝑢}) − 𝐹 (𝑆). (i) The function 𝐹 is
monotone non-decreasing in 𝑆 if 𝐹 (𝑢 | 𝑆) ≥ 0 for all 𝑢 ∈ 𝑉 \𝑆 . (ii)
The function 𝐹 is 𝛾-weakly submodular if for 𝑇 ⊂ 𝑉 \𝑆 , we have∑
𝑢∈𝑇 𝐹 (𝑢 | 𝑆) ≥ 𝛾 [𝐹 (𝑇 | 𝑆)] for 𝛾 > 0 [20]. If 𝛾 = 1, 𝐹 becomes

submodular.

Non-monotonicity and non-submodularity. It is well known
that the objective for traditional influence maximization problem (1)
is monotone and submodular for IC and LT models. [23] However,

our objective (3) for maximizing the weighted sum of top-𝐾 influ-
ence probabilities does not guarantee either of these properties as
noted in the following proposition 1.

Proposition 2. Assume that the information diffusion process
follows an IC model. Then, the function 𝐹𝐾 (𝑆) defined in Eq. (3) may
be neither monotone nor submodular in 𝑆 for 𝐾 < |𝑉 |.

Novel representation of 𝐹𝐾 (𝑆). Although 𝐹𝐾 (𝑆) need not be
monotone and submodular, we show that 𝐹𝐾 (𝑆) can be represented
as a difference between a monotone and 𝛾-weakly submodular and
a modular function. Specifically, we express 𝐹𝐾 (𝑆) as follows:

𝐹𝐾 (𝑆) =
[

max
𝐼⊆𝑉 \𝑆 : |𝐼 |=𝐾

∑︁
𝑢∈𝐼

𝑞𝑢 𝑝 (𝑢; 𝑆) + 𝜌 |𝑆 |
]

︸                                        ︷︷                                        ︸
𝐻𝐾 (𝑆 )

− 𝜌 |𝑆 |︸︷︷︸
𝑚 (𝑆 )

(4)

where 𝜌 > 0 is a constant. Here, we first add the modular function
𝑚(𝑆) = 𝜌 |𝑆 | with 𝐹𝐾 (𝑆) to obtain 𝐻𝐾 (𝑆) and then subtract it. In
the next Theorem, we present our result on monotonicity of𝐻𝐾 (𝑆).

Theorem 3. Let the infection probabilities 𝑝 (𝑢; 𝑆) < 𝑝max < 1 for
𝑢 ∉ 𝑆 and the node weights 𝑞𝑢 < 𝑞max. Then the set function 𝐻𝐾 (𝑆)
defined in Eq. (4) is monotone in 𝑆 if 𝜌 > 𝑞max whenever 𝑝 (𝑢; 𝑆) is
monotone submodular.

Although 𝐻𝐾 (𝑆) is monotone, it is not guaranteed to be sub-
modular. This is because, 𝐻𝐾 (𝑆) can be expressed as sum of the
set function 𝐹𝐾 (𝑆) and the modular function 𝜌 |𝑆 |. Thus, if 𝐻𝐾 (𝑆)
is submodular, 𝐹𝐾 (𝑆) would also have been submodular which is
not the case as shown in Proposition 2. However, 𝐻𝐾 (𝑆) satisfies
𝛾-weak submodularity as shown in the following theorem.

Theorem 4. Assume that, for all node 𝑢 ∈ 𝑉 , 𝑞min < 𝑞 < 𝑞max
and 0 < 𝑝min < 𝑝 (𝑢; 𝑆) < 𝑝max < 1 for 𝑢 ∉ 𝑆 . Then, under the
conditions of Theorem 3, 𝐻𝐾 (𝑆) is 𝛾-weakly submodular with 𝛾 > 𝛾∗

where 𝛾∗ is given by:

𝛾∗ = max
{

𝑞min𝑝min
𝜌 (𝑝min + 1) − 𝑞min + 2( |𝑉 | − 𝐾)𝜌𝑝max

,
𝑞min𝑝min
𝜌 + 𝐾𝑝max

}
. (5)

Here, in Eq. (5) the two values of 𝛾∗ within max {·, ·} indicate
the bound of 𝛾 on two different regimes. The first term within max
operator indicates the bound for higher values of 𝐾 . Specifically,
when 𝐾 → |𝑉 |, the first term becomes 𝑞min𝑝min

𝜌 (𝑝min+1)−𝑞min
. Moreover,

when 𝑞𝑢 = 𝜌 for all𝑢 ∈ 𝑉 , this ratio goes to unity— it reduces to the
result on submodularity of the objective of the existing influence
maximization problem. The second term𝛾 > 𝑞min𝑝min/(𝜌+𝐾𝑝max)
captures the bound for low values of 𝐾 . Note that, in general com-
puting both 𝑝max and 𝑝min can be difficult. However, they can be
easily estimated using Monte Carlo simulations for any IC or LT
model.
TopK-InfluMax algorithm. Algorithm 1, summarizes
TopK-InfluMax which maximizes 𝐹𝐾 (2). Based on the equivalent
formulation of (4), we use the stochastic distorted greedy algo-
rithm [20] to maximize the difference between a monotone 𝛾-weak
submodular function and a modular function, with a distortion fac-
tor set to 1. In each iteration, we sample a subset 𝐵𝑖 of nodes from
the graph, where the cardinality of 𝐵𝑖 is taken to be the size of
1Proofs of all technical results are in the Appendix, in the supplementary material.
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Algorithm 1: TopK-InfluMax [20]
Require: Budget 𝑏, the value of 𝜌 , edge probabilities {𝑝𝑢𝑣 } ∀𝑢, 𝑣 ∈ 𝑉 , a

fraction 𝑠 ∈ [0, 1].
1: 𝑆 ← ∅
2: for 𝑖 ∈ [𝑏 ] do
3: Randomly draw a subset of nodes 𝐵𝑖 of size 𝑠 |𝑉 | .
4: EstimateInfectionProbs(𝐺, {𝑝𝑢𝑣 } (𝑢,𝑣) ∈𝐸 )
5: 𝑣∗ ← argmax𝑣∈𝐵𝑖 𝐻𝐾 (𝑣 |𝑆 ) − 𝜌
6: if

(
1 − 𝛾

𝑏

) |𝑉 |−𝑖
𝐻𝐾 (𝑣∗ |𝑆 ) − 𝜌 > 0 then

7: 𝑆 ← 𝑆 ∪ {𝑣∗}
8: Return 𝑆

approximated minimum weighted vertex cover. In practice, we sub-
stitute the min-weighted vertex cover number with 75% of the size
of 𝑉 . We include the node with the highest positive marginal gain
in the solution set 𝑆 in each iteration.

Note that EstimateInfectionProbs finds the infection proba-
bilities for each node pair by simulating the information cascade
processM on edge weights {𝑝𝑢𝑣}. It is sufficient to simulate the IC
model [23]. We employ MC simulations to collect the total number
of times a node is “active" or has been influenced after all diffusion
MC rounds have completed, and then divide by the total number
of rounds. In practice, the cascade runner process is a subroutine
of 𝐹𝐾 .

Finally, we quote the approximation guarantee of Algorithm 1,
which is proved in [20].

Theorem 5. If 𝑠 in Algorithm 1 is given by 𝑠 = ⌈𝑛
𝑘
log

(
1
𝜖

)
⌉, then

Algorithm 1 returns a set 𝑆 which satisfies

E[𝐹𝐾 (𝑆)] ≥ (1 − exp(−𝛾))𝐻𝐾 (𝑂𝑃𝑇 ) − 𝜌 (𝑂𝑃𝑇 ) (6)

4 DESIGN OF INFLUNET

So far, we have assumed that the diffusion process follows IC or
LT. Realistically, the mechanics of the diffusion process needs to
be learned from data. In this section, we achieve this objective.
Specifically, we formulate the problem of learning an influence
model from {seed set, infected nodes} that outputs the set of top-𝐾
infected nodes 𝐼 for a given seed set 𝑆 .

To learn the diffusion process, we design InfluNet, which takes
a seed set 𝑆 as input and models the influence probability scores
𝑝\ (𝑢; 𝑆) for each node𝑢 ∈ 𝑉 , where these scores are modeled using
neural network parameterized by \ . Therefore, instead of assum-
ing a fixed parameterized model, e.g., IC or LT model, we rely on
expressive neural networks to uncover the underlying information
diffusion process.

4.1 Overview of InfluNet

Irrespective of modeling choices, the probability 𝑝 (𝑢; 𝑆) is a mono-
tone function in 𝑆 . Moreover, in practice, it should also follow the
law of diminishing returns. To this aim, we approximate 𝑝 (𝑢; 𝑆)
using a neural submodular function 𝑝\ (𝑢; 𝑆), which is parameter-
ized using \ . In a nutshell, it is a message passing network, which
recursively computes submodular functions at each node 𝑢 by ap-
plying a concave map on the submodular functions obtained in the
previous step [10].

For each node 𝑢, we maintain a probability score 𝑝 (𝑛) (𝑢; 𝑆) at
each step of recursion𝑛. Then, at step𝑛+1, we first gather 𝑝 (𝑛) (𝑣 ; 𝑆)
from all 𝑣 ∈ 𝑁 (𝑢)— the probability scores of the neighbors of
𝑢 computed at the previous step 𝑛— and feed each of them into
a concave function. Next, we add the outputs from the concave
function with a modular function and finally pass the sum through
another concave function to obtain the 𝑝 (𝑛+1) (𝑣 ; 𝑆)

4.2 Neural Parameterization

InfluNet consists of two components (i) a message passing neural
submodular function (MPNSF) and (ii) a graph neural network
(GNN).
Message passing neural submodular function.Given a concave
function 𝜙 : R+ → R+ and a submodular function 𝑓 (𝑆), it is well
known that 𝜙 (𝑓 (𝑆)) is submodular [12, 13, 31]. We leverage the
idea to build a recursive neural model of monotone submodular
function similar to [10]. Given a graph 𝐺 = (𝑉 , 𝐸), a set of node
embeddings {𝒙𝑢 |𝑢 ∈ 𝑉 }, a seed set 𝑆 ⊂ 𝑉 an integer𝑁 , we feed the
probability scores 𝑝 (𝑛) (𝑣 ; 𝑆) of the neighbors of 𝑢 into a concave
function 𝜙 . Next, we aggregate 𝜙 (𝑝 (𝑛) (𝑣 ; 𝑆)) from all in-neighbors
𝑣 ∈ 𝑁 (𝑢) using attention-weights 𝛼𝑢𝑣 and add to it a modular func-
tion𝑚 (𝑛)

\
. Finally, we feed the output into another concave function

𝜓 to update 𝑝 (𝑛) (𝑢; 𝑆) → 𝑝 (𝑛+1) (𝑢; 𝑆) .We formally represent this
formulation as follows:

𝑝 (𝑛) (𝑣 | 𝑆) = 1 for 𝑛 ∈ [𝑁 ], 𝑣 ∈ 𝑆 (7)

𝑝 (0) (𝑣 | 𝑆) = 0 for 𝑣 ∉ 𝑆 (8)

𝑝 (𝑛+1) (𝑢 | 𝑆) = 𝜓
( ∑︁
𝑣∈𝑁 (𝑢 )

𝛼𝑢𝑣𝜙 (𝑝 (𝑛) (𝑣 | 𝑆)) +
∑︁

𝑣∈𝑆∪𝑁 (𝑢 )
𝑚
(𝑛)
\
(𝒙𝑣)

)
for 𝑛 ∈ [𝑁 ], 𝑣 ∉ 𝑆 (9)

𝑝\ (𝑢; 𝑆) = 𝑝
(𝑁+1)
\

(𝑢; 𝑆) (10)

where, 𝛼𝑢𝑣 are computed in the following manner:

𝛼𝑢𝑣 =
𝑒𝛾\ (𝒙𝑢 ,𝒙𝑣 )∑

𝑣′∈𝑁 (𝑢 )
𝑒𝛾\ (𝒙𝑣′ ,𝒙𝑢 )

(11)

Here, note that 𝜙 and 𝜓 are concave functions and both are in
[0, 1];𝑚 (•) is a positive neural network that consists of a linear
and ReLU layer; and, 𝛾\ is neural network that comprises of a
linear, ReLU and linear networks. Note that Eq. (7) ensures that
the probability scores for each node of the seed set 𝑆 is always 1.
This is in line with the real-world interpretation that seed nodes
are already infected at the start. The recursive update (9) follows
a message passing protocol where a node acquires messages in
the form of submodular functions from its neighbors. Note that
𝑝\ (𝑢; 𝑆) is monotone submodular for all nodes 𝑢 ∈ 𝑉 as formalized
by the following proposition.

Proposition 6. Given that the functions 𝜙 and 𝜓 are positive,
monotonically increasing and concave; and, the function𝑚 (𝑛)

\
is a

positive. Then, 𝑝\ (𝑢; 𝑆) is a monotone submodular set function in 𝑆
for all 𝑢 ∈ 𝑉 .

Graph neural network for computing {𝒙𝑢 }.We compute the
representations {𝒙𝑢 } using a graph neural network (GNN) [14].
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Dataset |𝑉 | |𝐸 | 𝑑𝑎𝑣𝑔 Diameter

Deezer 28,281 92,752 3.27 21
CM Physics Citation 23,133 93,497 4.04 14
GNUtella 1 26,518 65,369 2.46 10
GNUtella 2 22,687 54,705 2.41 10

Table 1: Dataset statistics for experiments with capacity con-

strained influence maximization.

Here, we first start with a feature encoder FeatEnc\ which takes
the node features 𝒇𝑢 as input and output an initial embedding 𝒙𝑢 (0),
i.e.,

𝒙𝑢 (0) = FeatEnc\ (𝒇𝑢 ) for all 𝑢 ∈ 𝑉 (12)

Then, given an integer 𝐿, GNN first gathers information from ℓ < 𝐿

hop neighbors using 𝐿 propagation layers, then combine them with
a symmetric aggregator and finally update the node representations
in the following recursive manner.

𝒛 (𝑢,𝑣) (ℓ − 1) = 𝑍\ (𝒙𝑢 (ℓ − 1), 𝒙𝑣 (ℓ − 1)) (13)

𝒙𝑢 (ℓ) = Λ\

(
𝒛 (𝑢,𝑣) (ℓ − 1),

∑
𝑣∈𝑁 (𝑢 ) 𝒙𝑣 (ℓ − 1)

)
(14)

Finally, we compute the embedding of node 𝑢 as 𝒙𝑢 = 𝒙𝑢 (𝐿). The
parameters of 𝜙 ,𝜓 ,𝑚 (𝑛) and 𝛾\ in Eqs. (7)– (10) as well as FeatEnc,
𝑍 and Λ are decoupled, and are collectively denoted as \ .

4.3 Model training

Given a set of {(𝑆𝑖 , 𝐼𝑖 ) | 𝑖 ∈ [𝑀]} where 𝑆𝑖 is a seed set of nodes
and 𝐼𝑖 are the corresponding infected nodes in the same graph 𝐺 =

(𝑉 , 𝐸), our goal is to estimate the model parameters \ which would
predict the infected set 𝐼 that is closest to the ground truth infected
set 𝐼 for a given seed set 𝑆 . Hence, we aim tomaximize the sum of the
Jaccard coefficients between 𝐼𝑖 and 𝐼𝑖 , i.e.,

∑
𝑖∈[𝑀 ] |𝐼𝑖 ∩ 𝐼𝑖 |/|𝐼𝑖 ∪ 𝐼𝑖 |.

However, it is not differentiable. Thus, we resort to optimizing a
differentiable surrogate of Jaccard coefficient, given as follows.

maximize
\

∑︁
𝑖∈[𝑀 ]

∑
𝑢∈𝐼𝑖 𝑝\ (𝑢 | 𝑆𝑖 )∑

𝑢∈𝐼𝑖 𝑝\ (𝑢 | 𝑆𝑖 ) + |𝐼𝑖 |
(15)

In practice, we also add a small smoothing factor 𝑠 to the numerator
and denominator of the above objective, which helps in better train-
ing. The above function is also called Sorensen-dice coefficient [41].

Once trained, we can return the nodes having highest top-𝐾
values of 𝑝\ (𝑢; 𝑆) for an unseen seed set 𝑆 .

5 EXPERIMENTS ON MAXIMIZING

INFLUENCE

In this section, we evaluate our algorithm TopK-InfluMax which
maximizes the sum of top-𝐾 weighted probabilities, on four diverse
datasets against three competitive baselines.

5.1 Experimental Setup

Datasets. We run experiments on four public datasets, viz., Deezer
Social Network (Deezer), twoGnutella Network (Gnutella-1, Gnutella-
2) and Conditional Matter Physics Citation Network (CA-condmat).
For each dataset, we consider IC model with different edge probabil-
ities. The exact generative mechanism of edge probabilities varies

across experiments and is mentioned therein. For each dataset, we
generate 𝑞𝑢 uniformly at random. We summarize the datasets in
Table 1.
Baselines. We compare TopK-InfluMax against three state-of-
the-art influence maximization algorithms, viz., (i) Cost Effective
Lazy Forward (CELF) [16, 29], (ii) Influence Maximization with
Martingales (IMM) [43] and (iii) Online Processing algorithm for
IM [42] (OPIM) . All these algorithms were designed to find the
seed set 𝑆 which would maximize the expected influence spread
across the entire network. IMM is run with 𝜖 = 0.1, while OPIM is
run with a sample size of 1000 reverse reachable sets.
Evaluation protocol. Given a graph 𝐺 = (𝑉 , 𝐸), the underlying
edge probabilities {𝑝𝑢𝑣 | (𝑢, 𝑣) ∈ 𝐸}, the desired size of the infected
set 𝐾 and the seed set budget 𝑏, we run the baselines and TopK-
InfluMax on the graph, which provides us a solution 𝑆 for the
optimal seed set with |𝑆 | ≤ 𝑏. Since the baselines optimize a mono-
tone submodular function the seed set they output always has size
𝑏. However, our objective function 𝐹𝐾 (𝑆) described in Eq. (3) is
neither monotone nor submodular as suggested by Proposition 2.
Finally, we evaluate the quality of all the methods using 𝐹𝐾 (𝑆), the
sum of top-𝐾 probabilities. To compute this quantity, one needs to
compute 𝑝 (𝑢; 𝑆). To do so, we perform 1000 rounds of Monte Carlo
simulations and approximate 𝑝 (𝑢; 𝑆) using the fraction of times 𝑢
gets infected given the set 𝑆 .

5.2 Results

Performance comparison. We first compare our method against
the three baselines, i.e., CELF [29], IMM [43] and OPIM [42]. Here,
we set the edge probability as 𝑝𝑢𝑣 = 1/|𝑁𝑜𝑢𝑡 (𝑢) | where 𝑁𝑜𝑢𝑡 (𝑢)
is the out-degree of 𝑢. Figure 1 summarizes the results in terms of
variation of 𝐹𝐾 (𝑆) vs 𝑏 (top-row) and 𝐹𝐾 (𝑆) vs 𝐾/𝑏, i.e., the ratio
of the number of nodes selected to the budget (we vary both 𝐾
and 𝑏). We make the following observations. (i) TopK-InfluMax
outperforms the baselines across the entire horizon of 𝐾 and 𝑏. (ii)
CELF [29] outperforms all other baselines. CELF employs a lazy
forward algorithmwhere themarginal gain of the objective function
is selectively computed. However, it does not perform any sampling.
In contrast, IMM and OPIM are both based on sampling, where
paths and nodes are drawn during the computation of the reverse-
reachable-set, which is the core data structure used in IMM and
OPIM. As a result, CELF performs much better. (iii) As 𝑏 increases,
the performance boost of TopK-InfluMax against the baselines
becomes more and more prominent. This is because as the size
of 𝑆 increases, 𝑝 (𝑢; 𝑆) across all nodes 𝑢 become high. Hence, the
value of 𝑝min as well as 𝛾∗ for the function 𝐻𝐾 (𝑆) (see Theorem 4)
becomes high. This renders an improved approximation factor
1 − exp(−𝛾) in our algorithm. (iv) In the context of variation of
performance with 𝐾/𝑏, we observe that TopK-InfluMax admits a
competitive advantage for low values of 𝐾/𝑏, whereas for a high
value of 𝐾/𝑏, the difference between TopK-InfluMax and CELF
gets smaller. This is because as 𝐾/𝑏 increases 𝐹𝐾 (𝑆) goes close to
the objective of traditional influence maximization problem which
maximizes the spread of influence across all possible nodes.

Next, we consider two other distributions of edge probabilities—
(1) Constant where 𝑝𝑢𝑣 = 0.2 and (2) Trivalent where 𝑝𝑢𝑣 ∼
Unif {0.1, 0.01, 0.001} and compare TopK-InfluMax against the
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Figure 1: Variation of 𝐹𝐾 (𝑆), i.e., sum of top-𝐾 weighted probabilities against seed set budget 𝑏 (top row) and the value of the

ratio 𝐾/𝑏 (bottom row), for TopK-InfluMax and all the baselines, viz., CELF [29], IMM [43] and OPIM [42] across all four

datasets. In all cases, the edge probability is set as the inverse out degree of the source node, i.e., 𝑝𝑢𝑣 = 1/|𝑁𝑜𝑢𝑡 (𝑢) |. For the first
row, 𝐾 = 400. We observe that TopK-InfluMax outperforms the baselines for a wide landscape of both 𝐾 and 𝑏.
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Figure 2: Variation of 𝐹𝐾 (𝑆), i.e., sum of top-𝐾 weighted prob-

abilities vs seed set budget 𝑏 when 𝑝𝑢𝑣 = 0.2 (Constant, panel
(a)) and 𝑝𝑢𝑣 ∼ Unif {0.1, 0.01, 0.001} (Trivalent, panel (b)) us-
ing TopK-InfluMax and all the baselines, viz., CELF [29],

IMM [43] and OPIM [42] on Gnutella-2. In each case, 𝐾 = 400.
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Figure 3: Execution time of different algorithms for different

value of budget 𝑏 with 𝐾 = 300, for TopK-InfluMax and all

baselines on the Deezer and Gnutella-1 networks.

three baselines, i.e., CELF [29], IMM [43] and OPIM [42]. Figure 2
summarizes the results. We make the following observations. (i)
Our method outperforms the baselines; (ii) The difference between
our method and CELF is smaller than the difference when 𝑝𝑢𝑣 =

1/𝑁𝑜𝑢𝑡 (𝑢). This is because the structural dependence on the infec-
tion probabilities for both trivalent and constant are significantly

Dataset |𝑉 | |𝐸 | | {(𝑆𝑖 , 𝐼𝑖 )} | E[|𝐼𝑖 |] E[𝑆𝑖 ]
Digg [38] 30,268 519,250 1421 115.738 22.178
Weibo [38] 29,378 1,127,024 2000 3.459 2.0
Cit-HepPh [30] 34,546 421,578 1000 128.912 120.067

Table 2: Datasets for evaluation of InfluNet.

lower than the degree based edge probability computation. Thus
the variance of infection of probabilities across the nodes are very
low. As a result, the top-𝐾 nodes found by CELF also admit similar
value of 𝐹𝐾 (𝑆) as TopK-InfluMax.
Analysis of running time. Next, we compare the running times
of TopK-InfluMax against the baselines. Figure 3 summarizes the
results. While TopK-InfluMax is slower than IMM and OPIM, it is
still tractable and faster than CELF for high values of 𝑏. Therefore,
given the large size of the graphs and the performance it achieves,
it is still practically very useful despite high latency. It would be
interesting to extend similar path and node sampling approaches as
IMM and OPIM to our setup. However, sampling may lower efficacy
as already visible Fig. 1.

6 EXPERIMENTS ON LEARNING INFLUENCE

MODEL FROM (𝑆, 𝐼 ) PAIRS
In this section, we evaluate InfluNet against five competitors on
three datasets to show that InfluNet learns the influenced nodes
from the seed sets with higher accuracy than baselines.

6.1 Experimental Setup

Machine Setup. We performed our neural experiments on a 64-
core Intel Xeon Silver 4216 CPU (2.10GHz) server running Ubuntu
20.04.3 LTS, and provisioned with two NVIDIA RTX A6000 GPUs
and 1TB of RAM.
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Figure 4: Prediction of infected nodes from {(𝑆𝑖 , 𝐼𝑖 )}. Performance measured in terms of mean Jaccard Coefficient (left three

panels) and mean average precision (MAP, right three panels) for InfluNet and all the baselines, i.e., GAE [26], IMINF [38],

GCN [25], SAGE [19] and GAT [45] for Digg, Weibo and Cit-HepPh datasets.

Datasets.We use the three datasets listed in Table 2. While Digg
and Weibo contain real-world cascade data, Cit-HepPh does not.
Thus, we create synthetic cascades in Cit-HepPh by performing
1000 rounds ofMC simulations under ICwith trivalent edgeweights,
wherein edge weights are randomly sampled from {0.001, 0.01, 0.1}.
Cascades provide us ground-truth (𝑆, 𝐼 ) pairs, where 𝑆 corresponds
to the set of nodes starting a cascade and 𝐼 corresponds to the first
𝐾 nodes getting infected.
Baselines. We compare InfluNet against five baselines: (1) IM-
INF : We train IMINFECTOR [38], which is an algorithm designed
for learning influence probabilities from cascades, on our datasets.
Using the diffusion matrix output by the model, we perform in-
ference to obtain 𝐼 . (2) GAE: We train a graph autoencoder [26]
on the link prediction task. We infer edge weights for the given
graph using the trained autoencoder and using these edge weights.
During test, we perform MC simulations using an IC model for
a given seed set 𝑆 to obtain top-𝐾 infected nodes 𝐼 . (3)GCN : We
train the Graph Convolutional Network (GCN) [25] using a binary
node classification task where 𝑦𝑣 = +1(−1) if 𝑣 is (not) infected.
Given a seed set 𝑆 and a node 𝑣 , we model the classifier using a
neural network as𝑦𝑣 = NN(𝒙𝑣,

∑
𝑢∈𝑆 𝒙𝑢 ). Here NN is a deep neural

network which consists of a linear (128 × 128), ReLU and another
linear layer (128 × 1). (4) SAGE: Here we use another GNN, viz.,
GraphSAGE [19] and build the predictor of infected nodes using
the same method as GCN. (5) GAT : Here we use another GNN, viz.,
GAT [45] and build the predictor of infected nodes using the same
method as GCN. For the baselines (3–5), we use the final classifier
NN to output a score 𝑦𝑣 for every node for an test seed set 𝑆 . Based
on these scores, we obtain top-𝐾 nodes.
Evaluation protocol.We split the datasets of {(𝑆𝑖 , 𝐼𝑖 )} pairs into
60% training, 10% validation and 30% test folds. We then present our
training and validation folds before all the models for training. Once
the model is the trained, we provide a test seed set 𝑆𝑖 to the trained
model which in turn returns a ranking of all nodes𝑅 in terms of their
infection probability or score. In order to measure how does this
ranking comply with the gold infected nodes 𝐼𝑖 , we use two metrics:
(i) the Jaccard coefficient between between 𝐼𝑖 and the top |𝐼𝑖 | nodes
in 𝑅, i.e., 𝐼𝑖 ∩ 𝑅 [1...|𝐼𝑖 |]/𝐼𝑖 ∪ 𝑅 [1...|𝐼𝑖 |] and the average precision
computed [35] as 𝐴𝑣𝑝𝑖 =

∑ |𝑉 |
𝑗=1

1[𝑅 [ 𝑗 ]∈𝐼𝑖 ] |𝑅 [1... 𝑗 ]∩𝐼𝑖 |
|𝐼𝑖 | where 1[·] is

an indicator function. Finally, we compute the average over all pairs
of {(𝑆𝑖 , 𝐼𝑖 )} and report mean Jaccard coefficient and mean average
precision (MAP).
Implementation details. In all the experiments, we use dim(𝒙•) =
16 and 𝜙 (𝑥) = 𝜓 (𝑥) = 1 − 𝑒−𝑥 (9). We train each model for
30 epochs and select the model as the one which has given the
best value of mean Jaccard coefficient on the validation set, across

30 epochs. Additional details and code are in https://gitlab.com/
PritishC/influence-maximization.

6.2 Results

Figure 4 shows that InfluNet outperforms all the baselines by
a significant margin. While InfluNet is specifically engineered
towards uncovering the sequential diffusion process, none of the
baselines can achieve this task. Hence, mapping the task to simpler
problems such as node classification yields poor results.

7 CONCLUSION

We presented TopK-InfluMax, a novel algorithmic framework
for the top-𝐾 influence maximization problem, and InfluNet, a
neural network formulation to predict the top-𝐾 nodes by infection
probability given a seed set of nodes 𝑆 ⊂ 𝑉 as input. We show
that TopK-InfluMax beats the state-of-the-art algorithms in the
IM space, due to our re-formulation of the utility function as a
𝛾-weakly submodular function minus a modular cost function. We
also show that InfluNet out-competes relevant machine learning
baselines in the IM space for the top-𝐾 IM problem.

A PROOF OF TECHNICAL RESULTS

A.1 Proof of Proposition 2

1 2 3 4 5
𝑝12 𝑝23 𝑝34 𝑝45

Figure 5: Counterexample used in the proof of Proposition 2.

Proof by counterexample. Consider an IC model, the graph 𝐺
and the edge probabilities {𝑝𝑢𝑣} in Figure 5. Consider 𝑆 = {1, 2},
𝑇 = 𝑆 ∪ {5} and 𝑢 = 3. Let 𝐾 = 1, and assume that 𝑝23 > 0, 𝑝34 =

0, 𝑝45 = 1. Hence, 𝐹𝐾 (𝑆) for 𝐾 = 1 would be with the greatest
edge-probability in the out-neighborhood of 𝑆 . Next we compute
the values of the objective functions for different seeds.

𝐹𝐾 (𝑆) = 𝑝23 > 0, 𝐹𝐾 (𝑆 ∪ {𝑢}) = 𝑝34 = 0, (16)
𝐹𝐾 (𝑇 ) = 𝑝45 = 1, 𝐹𝐾 (𝑇 ∪ {𝑢}) = 𝑝45 = 1

We note that 𝐹𝐾 (𝑆 ∪ {𝑢}) − 𝐹𝐾 (𝑆) = −𝑝23 < 0 and therefore 𝐹𝐾 (𝑆)
is not monotone. Moreover, we have 𝐹𝐾 (𝑇∪{𝑢})−𝐹𝐾 (𝑇 ) = 0which
implies, 𝐹𝐾 (𝑆 ∪ {𝑢}) − 𝐹𝐾 (𝑆) < 𝐹𝐾 (𝑇 ∪ {𝑢}) − 𝐹𝐾 (𝑇 ). Therefore,
𝐹𝐾 (𝑆) is not submodular.

A.2 Proof of Theorem 3

Proof. Assume a configuration where if 𝑢 ∈ 𝑆 , then 𝑞𝑢 = 𝜌 . In such
a case, since 𝜌 > 𝑞max and 𝑝 (𝑢; 𝑆) = 1 for 𝑢 ∈ 𝑆 , the top-𝐾+|𝑆 | in
terms of the weighted probabilities will always include 𝑆 , since the

https://gitlab.com/PritishC/influence-maximization
https://gitlab.com/PritishC/influence-maximization
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value of 𝜌 will be always higher that 𝑞𝑢𝑝𝑢 . Thus, we define a seed
dependent weight ` (𝑢; 𝑆) as follows:

` (𝑢; 𝑆) = 𝑞𝑢 if 𝑢 ∉ 𝑆, and, 𝜌 if 𝑢 ∈ 𝑆 (17)

Note that ` (𝑢; 𝑆) is monotone in 𝑆 . Then we can write:

𝐻𝐾 (𝑆) = max
𝐼⊆𝑉 \𝑆 : |𝐼 |=𝐾

∑︁
𝑢∈𝐼

𝑞𝑢𝑝 (𝑢; 𝑆) + 𝜌 |𝑆 | (18)

(𝑖 )
= max
𝐼⊆𝑉 \𝑆 : |𝐼 | ≤𝐾

∑︁
𝑢∈𝐼

𝑞𝑢𝑝 (𝑢; 𝑆) + 𝜌 |𝑆 | (19)

(𝑖𝑖 )
= max

𝐼⊆𝑉 : |𝐼 | ≤ |𝑆 |+𝐾

∑︁
𝑢∈𝐼

` (𝑢; 𝑆)𝑝 (𝑢; 𝑆) (20)

Inequality (i) is due to the fact that
∑
𝑢∈𝐼 ` (𝑢; 𝑆)𝑝 (𝑢; 𝑆) increases

with augmenting more elements 𝐼 and thus the maximal 𝐼 will
have cardinality 𝐾 . Inequality (ii) is due to the fact that 𝑞𝑢𝑝 (𝑢; 𝑆) >
𝑞𝑣𝑝 (𝑣 ; 𝑆) for 𝑢 ∈ 𝑆 and 𝑣 ∉ 𝑆 (since 𝑢 ∈ 𝑆 implies that 𝑞𝑢 = 𝜌 >

𝑞max). Nextwe define 𝐼𝑆 = argmax𝐼⊆𝑉 : |𝐼 | ≤ |𝑆 |+𝐾
∑
𝑢∈𝐼 ` (𝑢; 𝑆)𝑝 (𝑢; 𝑆).

𝐻𝐾 (𝑆 ∪ {𝑣}) − 𝐻𝐾 (𝑆)

=
∑︁

𝑢∈𝐼𝑆∪{𝑣}
` (𝑢; 𝑆 ∪ {𝑣})𝑝 (𝑢; 𝑆 ∪ {𝑣}) −

∑︁
𝑢∈𝐼𝑆

` (𝑢; 𝑆)𝑝 (𝑢; 𝑆)

(𝑖 )
≥

∑︁
𝑢∈𝐼𝑆∪{𝑣}

` (𝑢; 𝑆 ∪ {𝑣})𝑝 (𝑢; 𝑆 ∪ {𝑣}) −
∑︁
𝑢∈𝐼𝑆

` (𝑢; 𝑆)𝑝 (𝑢; 𝑆 ∪ {𝑣})

(𝑖𝑖 )
≥

∑︁
𝑢∈𝐼𝑆∪{𝑣}

` (𝑢; 𝑆 ∪ {𝑣})𝑝 (𝑢; 𝑆 ∪ {𝑣})

− max
𝐼 ′⊆𝑉 :

|𝐼 ′ | ≤ |𝑆 |+𝐾

∑︁
𝑢∈𝐼 ′

` (𝑢; 𝑆 ∪ {𝑣})𝑝 (𝑢; 𝑆 ∪ {𝑣}) (21)

= max
𝐼⊆𝑉 :

|𝐼 | ≤ |𝑆 |+𝐾+1

∑︁
𝑢∈𝐼 ′

` (𝑢; 𝑆 ∪ {𝑣}) 𝑝 (𝑢; 𝑆 ∪ {𝑣})

− max
𝐼 ′⊆𝑉 :

|𝐼 ′ | ≤ |𝑆 |+𝐾

∑︁
𝑢∈𝐼 ′

` (𝑢; 𝑆 ∪ {𝑣}) 𝑝 (𝑢; 𝑆 ∪ {𝑣})

(𝑖𝑖𝑖 )
≥ 𝑞min · 𝑝min > 0

Inequality (i) is due to the fact that 𝑝 (𝑢; 𝑆 ∪ {𝑣}) ≥ 𝑝 (𝑢; 𝑆) as
increasing seed set size will never reduce the infection probability
of any node. Inequality (ii) is due to ` (𝑢; 𝑆 ∪ {𝑣}) > ` (𝑢; 𝑆) and
the fact that the second term takes the maximum value for all
𝐼 ′ : |𝐼 ′ | ≤ |𝑆 | +𝐾 . If the solution of the optimization problem of the
second term in Eq. (21) is 𝐼 ′, then 𝐼𝑆∩{𝑣}\𝐼 ′ consists of only one
node, say 𝑤 . Thus, the value of the quantity in Eq. (21) would be
𝑞𝑤𝑝 (𝑤 ; 𝑆). Inequality (iii) follows from this.

A.3 Proof for Theorem 4

Proof.We first attempt to bound 𝐻𝐾 (𝑇 ∪ {𝑣}) − 𝐻𝐾 (𝑇 ).
𝐻𝐾 (𝑇 ∪ {𝑣}) − 𝐻𝐾 (𝑇 )

=
∑︁

𝑢∈𝐼𝑇∪{𝑣}
` (𝑢;𝑇 ∪ {𝑣})𝑝 (𝑢;𝑇 ∪ {𝑣}) −

∑︁
𝑢∈𝐼𝑇

` (𝑢;𝑇 ∪ {𝑣})𝑝 (𝑢;𝑇 ∪ {𝑣})

+
∑︁
𝑢∈𝐼𝑇
[` (𝑢;𝑇 ∪ {𝑣}) − ` (𝑢;𝑇 )]𝑝 (𝑢;𝑇 ∪ {𝑣})︸                                                   ︷︷                                                   ︸

≤𝜌−𝑞min

+
∑︁
𝑢∈𝐼𝑇

` (𝑢;𝑇 )𝑝 (𝑢;𝑇 ∪ {𝑣}) −
∑︁
𝑢∈𝐼𝑇

` (𝑢;𝑇 )𝑝 (𝑢;𝑇 )

(𝑖 )
≤

∑︁
𝑢∈𝐼𝑇∪{𝑣}\𝐼𝑇

` (𝑢;𝑇 ∪ {𝑣})𝑝 (𝑢;𝑇 ∪ {𝑣}) + 𝜌 − 𝑞min

+
∑︁

𝑢∈𝐼𝑇 \𝐼𝑆
` (𝑢;𝑇 )𝑝 (𝑢; {𝑣}) +

∑︁
𝑢∈𝐼𝑆∩𝐼𝑇

` (𝑢;𝑇 ) [𝑝 (𝑢;𝑇 ∪ {𝑣}) − 𝑝 (𝑢;𝑇 )]

(𝑖𝑖 )
≤ 2 ( |𝑉 | − 𝐾) 𝜌𝑝max +

∑︁
𝑢∈𝐼𝑆∩𝐼𝑇

` (𝑢;𝑇 ) [𝑝 (𝑢;𝑇 ∪ {𝑣}) − 𝑝 (𝑢;𝑇 )]
+ 𝜌 − 𝑞min (22)

Inequality (i) follows from∑︁
𝑢∈𝐼𝑇

` (𝑢;𝑇 )𝑝 (𝑢;𝑇 ∪ {𝑣}) −
∑︁
𝑢∈𝐼𝑇

` (𝑢;𝑇 )𝑝 (𝑢;𝑇 )

=
∑︁

𝑢∈𝐼𝑇 \𝐼𝑆
` (𝑢;𝑇 ) [𝑝 (𝑢;𝑇 ∪ {𝑣}) − 𝑝 (𝑢;𝑇 )]

+
∑︁

𝑢∈𝐼𝑇∩𝐼𝑆
` (𝑢;𝑇 ) [𝑝 (𝑢;𝑇 ∪ {𝑣}) − 𝑝 (𝑢;𝑇 )] (23)

and the submodularity of 𝑝 (𝑢;𝑇 ) in 𝑇 . Inequality (ii) is due to the
fact that |𝐼𝐴\𝐼𝐵 | = |𝐼𝐴 ∪ 𝐼𝐵 | − |𝐼𝐵 | ≤ |𝑉 | − 𝐾 . Next, we reduce the
second term in Eq. (22) to the following:∑︁
𝑢∈𝐼𝑆∩𝐼𝑇

` (𝑢;𝑇 ) [𝑝 (𝑢;𝑇 ∪ {𝑣}) − 𝑝 (𝑢;𝑇 )]

(𝑖 )
≤

∑︁
𝑢∈𝐼𝑆

` (𝑢; 𝑆) ` (𝑢;𝑇 )
` (𝑢; 𝑆) [𝑝 (𝑢; 𝑆 ∪ {𝑣}) − 𝑝 (𝑢; 𝑆)]

(𝑖𝑖 )
≤ 𝜌

𝑞min


∑︁

𝑢∈𝐼𝑆∪{𝑣}
` (𝑢; 𝑆 ∪ {𝑣})𝑝 (𝑢; 𝑆 ∪ {𝑣}) −

∑︁
𝑢∈𝐼𝑆

` (𝑢; 𝑆)𝑝 (𝑢; 𝑆)


=
𝜌

𝑞min
[𝐻𝐾 (𝑆 ∪ {𝑣}) − 𝐻𝐾 (𝑆)] (24)

Inequality (i) is due to submodularity of 𝑝 (𝑢; 𝑆). Inequality (ii) is due
to ` (𝑢;𝑇 )/` (𝑢; 𝑆) ≤ 𝜌/𝑞min, ` (𝑢; 𝑆) is monotone in 𝑆 and 𝐼𝑆∪{𝑣} is
argmax𝐼 : |𝐼 | ≤𝐾+|𝑆 |+1

∑
𝑢∈𝐼 ` (𝑢; 𝑆∪{𝑣})𝑝 (𝑢; 𝑆∪{𝑣}) which provides

higher value than the set 𝐼𝑆 , of cardinality |𝑆 | + 𝐾 + 1. Combining
Eq. (22) and Theorem 3, we have:

𝐻𝐾 (𝑢 | 𝑆)
𝐻𝐾 (𝑢 |𝑇 )

≥ 𝑞min𝑝min
𝜌 (𝑝min + 1) − 𝑞min + 2( |𝑉 | − 𝐾)𝜌𝑝max

(25)

This gives us an ratio for 𝛾-weak submodularity. Next, we have:

𝐻𝐾 (𝑢 |𝑇 ) = 𝐹𝐾 (𝑢 |𝑇 ) + 𝜌 ≤ 𝐾𝑝max + 𝜌 (26)

This proves the second upper bound, i.e.,𝛾∗ = 𝑞min𝑝min/(𝜌 + 𝐾𝑝max)

A.4 Proof of Proposition 6

We prove the result by induction. Note that for 𝑛 = 0, 𝑝 (0) (𝑣 | 𝑆) =∑
𝑢∈𝑆 1[𝑣 = 𝑢] is monotone modular where 1[·] is an indicator

function. Now let us assume that 𝑝 (𝑛) (𝑣 | 𝑆) is monotone submodu-
lar. Then using the fact that— 𝜙 (𝑓 (𝑆)) is monotone and submodular
function if𝜙 is an increasing concave function and 𝑓 is submodular—
we can prove that 𝑝 (𝑛+1) (𝑣 | 𝑆) is also submodular.
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